A Two Level Classifier Process for Audio Segmentation

نویسندگان

  • Sébastien Lefèvre
  • Benjamin Maillard
  • Nicole Vincent
چکیده

We are dealing in this paper with audio segmentation. We propose a two level segmentation process that enables the audio tracks to be sampled in short sequences which are classified into several classes. The segmentation is performed by computing several features for each audio sequence. These features are computed either on a complete audio segment or on a frame (set of samples) which is a subset of the audio segment. The proposed approach for microsegmentation of audio data consists of a combination of a K-Means classifier at the segment level and of a Multidimensional Hidden Markov Model system using the frame decomposition of the signal. A first classification is obtained using the K-Means classifier and segment-based features. Then final result comes from the use of Multidimensional Hidden Markov Models and frame-based features involving temporary results. Multidimensional Hidden Markov Models are an extension of classical Hidden Markov Model dedicated to multicomponents data. They are particularly adapted in our case where each audio segment can be characterized by several features of different nature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two level strategy for audio segmentation

In this paper we are dealing with audio segmentation. The audio tracks are sampled in short sequences which are classified into several classes. Every sequence can then be further analysed depending on the class it belongs to. We first describe simple techniques for segmentation in two or three classes. These methods rely on amplitude, spectral or cepstral analysis, and classical hidden markov ...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Segmentation For Analysis of Football Audio Sequences

In this paper we are dealing with segmentation of audio data in order to analyse football audio/video sequences. Audio data is divided into short sequences (typically with duration of one or half a second) which will be classified into several classes (speaker, crowd and referee whistle). Every sequence can then be further analysed depending on the class it belongs to. In order to segment audio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002